Comorbidity, alternatives and challenges in cancer research

Authors

Abstract

In recent years, comorbidity studies have increased.

This article presents an updated synthesis of the most commonly used measures in cancer research and some particularities of their application; it will offer a statistical culture in this respect. The spectrum of comorbidity measures is wide, and no clearly superior method can be determined. The choice of the most suitable instrument will depend on the research problem, objectives, study design, planned or available sources of information and the expected time of the investigation.  Comorbidity is a multidimensional variable of a dynamic nature. Its incorporation in current statistical information systems and in hospital cancer registries favors information management and maximizes its use in the medical care and research process.

Downloads

Download data is not yet available.

References

GR, Mackenzie A, Magnuson A, Olin R, Chapman A, Mohile S, Allore H et al. Comorbidity in older adults with cancer. J Geriatr Oncol. 2016;7(4):249-57. DOI: 10.1016/j.jgo.2015.12.002

Sarfati D. Review of methods used to measure comorbidity in cancer pupulations. J Clin Epidemiol. 2012;65(9):924-33.

Sarria M, Parellada O, Small S Lence JJ et al. Prevalence of comorbidity and impact on survival in women with lung, breast and cervical cancer. J Gynecol Reprod Med. 2021; 5(1):56-65. DOI: https://dx.doi.org/10.33140/JGRM

Grose D, Devereux G, Milroy R. Comorbidity in lung cancer: important but neglected. A review of the current literature. Clin Lung Cancer. 2011 Jul;12(4):207-11. DOI: 10.1016/j.cllc.2011.03.020

Dalton SO, Ross L, Düring M, Carlsen K, Mortensen PB, Lynch J, et al. Influence of socioeconomic factors on survival after breast cancer—A nationwide cohort study of women diagnosed with breast cancer in Denmark 1983–1999. Int. J. Cancer. 2007; 12:2524–253. DOI: 10.1002/ijc.22979

Dalton SO, Steding-Jessen M, Jakobsen E, Mellemgaard A, Østerlind K, Schüz J, et al. Socioeconomic position and survival after lung cancer: Influence of stage, treatment and comorbidity among Danish patients with lung cancer diagnosed in 2004-2010. Acta Oncol. 2015 May;54(5):797-804. DOI: 10.3109/0284186X.2014.1001037

Ibfelt EH, Kjær SK, Høgdall C. Socioeconomic position and survival after cervical cancer: influence of cancer stage, comorbidity and smoking among Danish women diagnosed between 2005 and 2010. British Journal of Cancer. 2013; 109:2489–2495. DOI: 10.1038/bjc.2013.558

Robinson KM, Christensen KB, Ottesen B, Krasnik A. Socio-demographic factors, comorbidity and diagnostic delay among women diagnosed with cervical, endometrial or ovarian cancer. Eur J Cancer Care (Engl). 2011 Sep;20(5):653-61. DOI: 10.1111/j.1365-2354.2011.01259.x

Lamm R, Hewitt DB, Li M, Powell AC, Berger AC. Socioeconomic Status and Gastric Cancer Surgical Outcomes: A National Cancer Database Study. J Surg Res. 2022;275:318-326. DOI: 10.1016/j.jss.2022.02.004

Skyrud KD, Bray F, Eriksen MT, Nilssen Y, Møller B. Regional variations in cancer survival: Impact of tumour stage, socioeconomic status, comorbidity and type of treatment in Norway. Int. J. Cancer. 2016;138, 2190–2200. DOI: 10.1002/ijc.29967

Mehta HB, Sura SD, Adhikari D, Andersen CR, Williams SB, Senagore AJ et al. Adapting the Elixhauser comorbidity index for cancer patients. Cancer. 2018;124(9):2018-2025. DOI: 10.1002/cncr.31269

Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-83.

DOI: 10.1016/0021-9681(87)90171-8

Piccirillo JF, Tierney RM, Costas I, Grove L, Spitznagel EL Jr. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA. 2004;291(20):2441-7.DOI: 10.1001/jama.291.20.2441

Boakye D, Günther K, Niedermaier T, Haug U, Ahrens W, Nagrani R. Associations between comorbidities and advanced stage diagnosis of lung, breast, colorectal, and prostate cancer: A systematic review and meta-analysis. Cancer Epidemiol. 2021;75:102054.

DOI: 10.1016/j.canep.2021.102054

Canoui-Poitrine F, Segaux L, Benderra MA, About F, Tournigand C, Laurent M et al. The Prognostic Value of Eight Comorbidity Indices in Older Patients with Cancer: The ELCAPA Cohort Study. Cancers (Basel). 2022;14(9):2236.

DOI: 10.3390/cancers14092236

National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology. Version 1.2023.

NAACCR Discharge Data Work Group, editors. Discharge Data Best Practices Guide. Springfield, IL: North American Association of Central Cancer Registries; 2015. Disponible en:

https://www.naaccr.org/wp-content/uploads/2016/11/Discharge-and-Claims-Data-Best-Practices-Guide.pdf

Access: April, 2023

Lichtensztajn DY, Giddings BM, Morris CR, Parikh-Patel A, Kizer KW. Comorbidity index in central cancer registries: the value of hospital discharge data. Clin Epidemiol. 2017;9:601-609. DOI: 10.2147/CLEP.S146395

Published

2024-05-28

How to Cite

1.
Castro MS, Lence Antá JJ, Parellada Joa O. Comorbidity, alternatives and challenges in cancer research. Rev Cub Oncol [Internet]. 2024 May 28 [cited 2025 Jul. 1];20(3). Available from: https://revoncologia.sld.cu/index.php/onc/article/view/82762

Issue

Section

Artículos de Revisión