Inmunotoxinas en Terapias Dirigidas contra el Cáncer
Resumen
Introducción: En los últimos años se han estudiado las inmunotoxinas que son proteínas quiméricas formadas por conjugación de un anticuerpo monoclonal (AcM) a una toxina proteica para su empleo en la terapia del cáncer. En este trabajo se reporta una actualización de las investigaciones de los últimos diez años en el uso de las inmunotoxinas como herramientas para la terapia del cáncer. Objetivo: Mencionar el concepto de inmunotoxinas y el estado del arte en los últimos diez años de su uso en la terapias dirigidas contra el cáncer. Métodos: Se realizó una búsqueda de artículos en inglés y español, en los últimos diez años con relación a la metodología de obtención, tipos de inmunotoxinas y de los resultados obtenidos en ensayos preclínicos y clínicos. Resultados: Se evalúan diversas inmunotoxinas en ensayos clínicos Fase II y III. En el 2018 se aprobó el uso de la inmunotoxina Lumoxiti por la FDA, (Food and Drug Administration), para el tratamiento de la leucemia de células pilosas lo que confirma las posibilidades terapéuticas de estas moléculas. Conclusiones: Los resultados de diversos grupos de trabajo manifiestan un marcado interés del uso de las inmunotoxinas en Oncología como una alternativa para superar los efectos adversos de los citóstáticos.
Descargas
Citas
1. Cáncer.gov [Internet]. Estados Unidos: Cancer Statistics, 2020[Actualizado el 25 de Agosto de 2020, citado 10 de diciembre del 2020] Disponible en: https://www.cancer.gov/about-cancer/understanding/statistics
2. Rebecca, L., Siegel, Kimberly D., Miller, Ahmedin Jemal. Cancer Statistics, 2020. CA. 2020;7-30.
3. López, L. M., Aloma, I. A., Sánchez, E., Martínez, M. A., Alonso, I., Bess, S. Anuario Estadístico de salud 2018. Gaceta Oficial de la República de Cuba. 2019; 59: 39-45; 55-83.
4. Aloma, I. A., Sánches, E., Martínez, M. A., López, L. M., Alonso I., Bess, S. Anuario Estadístico de salud 2019. Gaceta Oficial de la República de Cuba. 2020; Volumen 59: 39-43; 55-65.
5. Allahyari, H., Heidari, S., Ghamgosha, M., Saffarian P. y Amani, J. Immunotoxin: A new tool for cancer therapy. Tumor Biology. 2017; 30: 2-8.
6. Zhong, L., Li, y., Xiong, L., Wang, W., Wu, M.,Yuan, W., Chenyu, T., Miao, Z., Wang, T. & Yamg, Sh. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Nature. 2021; 6:201; https://doi.org/10.1038/s41392-021-00572-w.
7. Suryyadev, Y. Y., Kumar, V. A., Kumar, Y. R.; Vimal Y. y Piyush Y. Targeted Cancer Theraphy. Researcher’s Reflection, 2017; 1(1): 11-17. http://pgi.edu.in.
8. Ke, X. y Shen, L. Molecular targeted thepaphy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine. 2017; 1: 69-75. http://dx.doi.org/10.1016/j.flm.2017.06.001
9. Hwang, K., Yoon, J. H., Ji H. Lee y Lee, S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines. 2021; 9 (39): 2-17. https://www.mdpi.com/journal/biomedicines
10. Haefeez, U., Parakh, S., Gan, H., & Scott, A. Antibody-Drug Conjugates for Cancer Therapy. Molecules, 2020; 25 (20), 4764; doi: http://doi.org/10.3390/molecules25204764.
11. Biteghe, F. A. N., Chalomie, N. E. T., Mungra, N., Vignaux, G., Gao, N., Vergeade, A., Okem, A., Naran, K., De La Croix, J., & Barth, S. Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines, 2020; 8(9), 327. doi:10.3390/biomedicines8090327
12. Kimiz-Gebologlu, I., Gulce-Iz, S., & Biray-Avci, C. Monoclonal antibodies in cancer immunotherapy. Molecular Biology Reports, 2018; doi:10.1007/s11033-018-4427-x
13. Mercatelli, D., Bortolotti, M., Bazzocchi, A., Bolognesi, A. y Polito, L. ImmunoconjugatesforOsteosarcomaTherapy: PreclinicalExperiences and FuturePerspectives. Biomedicines, 2018; 6 (19): 2-7. www.mdpi.com/journal/biomedicines.
14. Wei, J., Bera, T. K., Liu, X. F., Zhou, Q., Onda, M., Ho, M., Tai, Ch-Hs., Pastan, I. Recombinant immunotoxins with albumin-binding domains have long half-lives and high antitumor activity. Proceedings of the National Academy of Sciences, 2018; 115(15), E3501–E3508. doi:10.1073/pnas.1721780115.
15. Polito, L., Djemil, A., y Bortolotti, M. Plant Toxin-Based Immunotoxins for Cancer Therapy: A Short Overview. Biomedicines, 2016, 4 (12): 1-9. doi:10.3390/biomedicines4020012.
16. Shan, L., Liu, Y. y Wang, P. Recombinant Immunotoxin Therapy of Solid Tumors: Challenges and Strategies. NIH Public Access, J Basic Clin Med. 2014; 2(2): 1–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192646
17. Wei, Y., Yap y Jung S., Hwang. Response of cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules, 2018; 23 (10): https://www.mdpi.com/1420-3049/23/10/2537/htm.
18. Köhler, G., y Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517), 495–497. doi:10.1038/256495a0
19. Kreitman, R., & Pastan, I. Immunotoxins: From Desing to Clinical Application. Biomolecules, 2021, 11 (11), 1696; https://doi.org/10.3390/biom11111696
20. Avila A, Calderon C, Pérez R, Alvarez I, Pons C, Ortiz A y Pereda C. Construction and Biological in vitro evaluation of Immunotoxins by Linking of monoclonal antibodies with a Hemolytic Toxin from a Sea Anemone. Pharmacology online, 2006; 3: 384-391.
21. Avila A, Calderon C, Pérez R, Pons C, Pereda C y Ortiz A. Construction of an Immunotoxins by Linking a Monoclonal Antibody against the human epidermal growth factor receptor and a hemolytic toxin. Biol Res, 2007; 40: 173-183.
22. Wang, Z., Duran-Struuck, R., Crepeau, R., Matar, A., Hanekamp, I., Srinivasan, S., Neville D.M., Sachs D.H., y Huang, C. A. Development of a Diphtheria Toxin Based Antiporcine CD3 Recombinant Immunotoxin. Bioconjugate Chemistry, 2011; 22(10), 2014–2020. doi:10.1021/bc200230h
23. Antignani, A., Ho, E. C. H., Bilotta, M. T., Qiu, R., Sarnvosky, R., y FitzGerald, D. J. Targeting Receptors on Cancer Cells with Protein Toxins. Biomolecules, 2020; 10(9), 1331. doi:10.3390/biom10091331
24. Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978;15:245–250. https://www.biorxiv.org/content/10.1101/420158v1.full
25. Shafiee, F., Aucoin, M. G., & Jahanian-Najafabadi, A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Frontiers in Microbiology, 2019; 10. doi:10.3389/fmicb.2019.02340
26. Hamamichi, S., Fukuhara, T., & Hattori, N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins, 2020; 12(10), 658. doi:10.3390/toxins12100658
27. Zuppone, S., Fabbrini, M. S., y Vago, R. Hosts for Hostile Protein Production: The Challenge of Recombinant Immunotoxin Expression. Biomedicines, 2019; 7(2), 38. doi:10.3390/biomedicines7020038
28. Yap, W., y Hwang, J. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules, 2018; 23(10), 2537. doi:10.3390/molecules23102537
29. Wu, T., & Zhu, J. Recent development and optimization of pseudomonas aeruginosa exotoxin immunotoxins in cancer therapeutic applications International Immunopharmacology, 2021; 96, 107759. doi:10.1016/j.intimp.2021.107759.
30. Leshem, Y., & Pastan, I. Pseudomonas Exotoxin Immunotoxins and Anti-Tumor Immunity: From Observations at the Patient’s Bedside to Evaluation in Preclinical Models. Toxins, 2019; 11(1), 20. doi:10.3390/toxins11010020
31. Kreitman, R. J., Arons, E., Stetler-Stevenson, M., Fitzgerald, D. J. P., Wilson, W. H., &Pastan, I. Recombinant immunotoxins and other therapies for relapsed/refractory hairy cell leukemia. Leukemia & Lymphoma, 2011; 52(sup2), 82–86. doi:10.3109/10428194.2011.565843
32. Ross, W. C. J., Thorpe, P. E., Cumber, A. J., Edwards, D. C., Hinson, C. A., y Davies, A. J. S.: Increased Toxicity of Diphtheria Toxin for Human Lymphoblastoid Cells following Covalent Linkage to Anti-(human lymphocyte) Globulin or Its F(ab’)2 Fragment. European Journal of Biochemistry, 1980; 104(2), 381–390. doi:10.1111/j.1432-1033.1980.tb04438.x
33. Foss, F. M. DAB389IL-2 (ONTAK): A Novel Fusion Toxin Therapy for Lymphoma. Clinical Lymphoma, 2000; 1(2), 110–116. doi:10.3816/clm.2000.n.009
34. Wawrzynczak, E. J.: Systemic immunotoxin therapy of cancer: advances and prospects. Br. J. Cancer, 1991; (64): 624-630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1977692/
35. Jiao, P., Zhang, J., Dong, Y., Wei, D., & Ren, Y. Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Applied Microbiology and Biotechnology, 2018; doi:10.1007/s00253-018-9291-z
36. Avila, A., Mateo, C., y Lage, A. A New Immunotoxin built by linking a hemolytic toxin to a monoclonalantibody specific for immature T lymphocytesInt.J.Cancer,1988; 42: 568-571.
37. Antignani, A., y FitzGerald, D. Immunotoxins: The Role of the Toxin. Toxins, 2013, 5: 1486-1502; doi:10.3390/toxins5081486.
38. Thrush, G. R., Lark, L. R., Clinchy, B. C., &Vitetta, E. S. IMMUNOTOXINS: An Update. AnnualReview of Immunology, 1996; 14(1): 49–71. doi:10.1146/annurev.immunol.14.1.49
39. Kreitman, R. J. Immunotoxins for targeted cancer therapy. The AAPS Journal, 2006; 8(3), E532–E551. doi:10.1208/aapsj080363
40. Li, Z., Yu, T., Zhao, P y Ma, Jie. Immunotoxins and Cancer Therapy. Cellular & Molecular Immunology, 2005; 2(2): 106-112. http://www.cmi.ustc.edu.cn/2/2/106.pdf
41. Pastan, I., Hassan, R., FitzGerald, D. J., &Kreitman, R. J. Immunotoxin therapy of cancer. Nature Reviews Cancer, 2006; 6(7), 559–565. doi:10.1038/nrc1891
42. Mateo, C., Avila, A., Rodriguez, M., y Lage, A. Preparacion de una inmunotoxina por acoplamiento de un monoclonal contra linfocitos t y una toxina hemolitica de origen marino, Rec Cubana Oncol, 1987; 3(2): 281-290.
43. Avila, A., Mateo, C., y Lage, A. A carcinoembryonic antigen-directed immunotoxin built by linking a monoclonal antibody to a hemolitic toxin, Int. J. Cancer, 1989;43: 926-929.
44. Avila, A., Calderón, C., Pérez, R., Alvarez, I., Pons, C., Ortiz, A., y Preda, C. Construction and Biological in vitro evaluation of immunotoxins by linking of monoclonal antibodies with a haemolitic toxin from a sea anemone, Pharmacology online, 2006; 3: 384-391.
45. Avila, A., Calderón, C., Pérez, R., Pons, C., Pereda, C., y Ortiz, A. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin, Biol Res, 2007;40: 173-183.
46. Magadán, R., Mateo, C., y A, Lage. Inmunotoxinas. Síntesis y evaluación biológica preliminar de un conjugado AcM anti T3-ricina cadena A, Rev. Interferón y Biotecnología, 1988; 4(3): 267-269. ISSN 0138-8878.
47. Tejuca, M., Pérez-Barzaga, V., Pazos, F., Álvarez, C., y Lanio, M.E. Construction of sea anemone cytolysin-based immunotoxins for selective killing of cancer cells, Rev. Cub. Física, 2009; 26(1): 15-22.
48. Tejuca, M., Díaz, I., Figueredo, R., Roque, L., Pasos, F., Martínez, D., Iznaga-Escobar, N., Pérez, R., Alvarez, C. y Lanio, M. Construction of an immunotoxin with the pore forming protein StI and ior C5, a monoclonal antibody against a colon cáncer cell line, International Immunopatoligy, 2004; 4: 731-744.
49. Tejuca, M., Anderluh, G. y Dalla, M. Sea anemone cytolysins as toxic components of immunotoxins, Toxicon, 2009; 54: 1206-1214.doi:10.1016/j.toxicon.2009.02.025
50. Lee, S., Park, S., Nguyen, T. M., Lee, E., Kim, J., Baek, S., Kim, J. Y., y Choe, H. A chemical conjugate between HER2-targeting antibody fragment and Pseudomonas exotoxin A fragment demonstrates cytotoxic effects on HER2-expressing breast cancer cells, 2019; 52(8): 496-501. doi: 10.5483/BMBRep.2019.52.8.250.
51. Vitetta, E. S., Krolick, K.A., Miyama-Inaba, M., Cushley, W., y Uhr, J.W., Immunotoxins: a new approach to cancer therapy, 1983; 11;219(4585):644-50. doi: 10.1126/science.6218613
52. Mahmoudi, R., Dianat-Moghadam, H., Poorebrahim, M., Siapoush, S., Poortahmasebi, V., Salahlou, R., & Rahmati. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int, 2021; 21: 470. https://doi.org/10.1186/s12935-021-02182-6
53. Shan, L., Liu, Y., y Wang, P. Recombinant Immunotoxin Therpay of Solid Tumors: Challenges and Strategies. J Basic Clin Med. 2013; 2 (2):1-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192646/pdf/nihms581768.pdf
54. Sanz, L.; Ibáñez-Pérez, R.; Guerrero-Ochoa, P.; Lacadena, J.; Anel, A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021, 9, 1729. https://doi.org/10.3390/ biomedicines9111729
55. Kim, J-S., Jun, S-Y., y Kim, Y-S. Critical Issues in the Development of Immunotoxins for Anticancer Therapy. Journal of Pharmaceutical Sciences, 2020; 109: 104-115. https://doi.org/10.1016/j.xphs.2019.10.037
56. Alewine, C., Hassan, R., & Pastan, I. Advances in Anticancer Immunotoxin Therapy. TheOncologist, 2015, 20(2), 176–185. doi:10.1634/theoncologist.2014-0358
57. Li, M., Liu, Z.-S., Liu, X.-L., Hui, Q., Lu, S.-Y., Qu, L.-L., Li, Y.-S., Zhou, Y., Ren, H.-L., y Hu, P. Clinical targeting recombinant immunotoxins for cancer therapy. OncoTargets and Therapy, 2017;(10) 3645–3665. doi10.2147ott.s134584
58. Ruiz-de-la-Herrán, J., Tomé-Amat, J., Lázaro-Gorines, R., Gavilanes, J. G., &Lacadena, J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxinα-Sarcin- or RNase T1-Based Immunotoxins. Toxins, 2019; 11(10), 593. doi:10.3390/toxins11100593
59. Pirzer, T., Becher, K.-S., Rieker, M., Meckel, T., Mootz, H. D., & Kolmar, H. Generation of Potent Anti-HER1/2 Immunotoxins by Protein Ligation Using Split Inteins. ACS ChemicalBiology, 2018; 13(8), 2058–2066. doi:10.1021/acschembio.8b00222
60. Ayala, C. Los camélidos sudamericanos. Revista de Investigación e Innovación Agropecuaria de Recursos Naturales, 2018; 2409-1618. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2409-16182018000300003&lng=es&nrm=iso
61. Dhillon, S. Moxetumomab Pasudotox: First Global Approval. Drugs. 2018; 78: 1763-1767. doi:10.1007/s40265-018-1000-9
62. Zhu, S., Liu, Y., Wang, P. C., Gu, X., & Shan, L. Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. Bio Med Research International, 2017; 1–18. doi:10.1155/2017/7929286
63. Ruiz de la Herrán J. Diseño de variantes optimizadas de inmunotoxinas basadas en ribnucleasas fúngicas: efecto antitumoral in vitro e in vivo. [Tesis Doctoral]. Madrid: Universidad Complutense de Madrid. Facultad de Ciencias Químicas; 2021
64. Jones, T. D., Hearn, A. R., Holgate, R. G. E., Kozub, D., Fogg, M. H., Carr, F. J., … Gehlsen, K. R.. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+T cell epitopes and its use as an immunotoxin warhead. Protein Engineering Design and Selection, 2016; 29(11), 531–540. doi:10.1093/protein/gzw045
65. Ibáñes-Pérez, R., Guerrero-Ochoa, P., Al-Wasaby, S., Navarro, R., Tapia-Galisteo, A., Miguel, D., Gonzalo, O., Conde, B., Martínez-Lostao, L., Hurtado-Guerrero, R., Sanz, L., y Anel, A. Anti-tumoral potente of human granulysin-based, CEA-targeted cytolutic immunotoxin. Oncoinmmunology, 2019 (8)1-11. doi: 10.1080/2162402X.2019.1641392
66. Rust, A., Patridge, L.J., Davletov, B., y Hautbergue, H.M. The Use of Plant-Derived Ribosome Inactivating Proteins in Immunotoxin Development: Past, Present and Future Generations. Toxins, 2017; 9 (344) 15. doi:10.3390/toxins9110344
67. Fleming, B. D., & Ho, M. Development of Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer: An Update. Biomolecules, 2020; 10(6), 934. doi:10.3390/biom10060934
68. Słomińska-Wojewódzka, M., &Sandvig, K. Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro. Antibodies, 2013; 2(4), 236–269. doi:10.3390/antib2020236
69. Zuppone, S., Assalini, C., Minici, C., Bertagnoli, S., Branduardi, P., Degano, M., Fabbrini, M.S., Montorsi, F., Salonia, A., y Vago, R. The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP. Scientific Reports, 2020; 10(1). doi:10.1038/s41598-020-59313-8
70. Lord, J.M., Roberts, L.M., y Robertus, J.D. Ricin: structure, mode of action, and some current applications. FASEB Journal, 1994; (8): 201-208. www.fasebj.org
71. Hayoun MA, Kong EL, Smith ME, et al. Ricin Toxicity. [Updated 2021 Jul 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021; Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441948/
72. Lin, Y.; Xu, L.; Li, Y.; Wu, X.; Liu, Y.; Zhu, H.; Zhou, H. Ribosome-Inactivating Proteins of Bougainvillea glabra Uncovered Polymorphism and Active Site Divergence. Toxins 2021, 13, 331. https://doi.org/10.3390/toxins 13050331
73. Giansanti, F., Flavell, D., Angelucci, F., Fabbrini, M., &Ippoliti, R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins, 2018; 10(2), 82. doi:10.3390/toxins10020082
74. Wayne, A.S., FitzGerald, D., Kreitman, R.J., y Pastan, I. Immunotoxins for leukemia. Blood, 2014; 16(123): 2470-2477. doi: 10.1182/blood2014-01-492256.
75. Mei, X., Chen, J., Wang, J., y Zhu, J. Immunotoxin: Targeted Toxin Delivery for Cancer Therapy. Pharmaceut Front, 2019; (1): 33-45. doi.org/ 10.1055/s-0039-1700507.
76. Michalska, M., y Wolf, P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Frontiers in Microbiology, 2015; 963 (6): 7. doi: 10.3389/fmicb.2015.00963.
77. Chandramohan, V., Sampson, J. H., Pastan, I. H., &Bigner, D. D. Immunotoxin Therapy for Brain Tumors. Translational Immunotherapy of Brain Tumors, 2017; 227–260. doi:10.1016/b978-0-12-802420-1.00010-7
78. Sokolova, E., Guryev, E., Yudintsev, A., Vodeneev, V., Deyev, S., Balalaeva, I. HER2-specific recombinant immunotoxin 4D5scFv-PE40 passes through retrograde trafficking route and forces cells to enter apoptosis. Oncotartget, 2017; 8(13): 22048-22058. www.impactjournals.com/oncotarget
79. Dieffenbach, M., &Pastan, I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules, 2020; 10(7), 979. doi:10.3390/biom10070979
80. Hu, Bo., Gou, W., Wang, L., Wang, J., Liu, X., y Jiao, B. Purification and Characterization of Gigantoxin-4, a New Actinoporin from the Sea Anemone Stichodactyla gigantea. Int. J. Biol. Sci, 2011; 7(6): 729-739. doi:10.7150/ijbs.7.729
81. García-Ortega, L., Alegre-Cebolla, J., García-Linales, S., Bruix, M., Martínez-del-Pozo, A., y Gavilanes, J. G. 2011; 9(1808): 2275-2288. doi.org/10.1016/j.bbamem.2011.05.012
82. Zahaf, N.-I., y Schmidt, G. Bacterial Toxins for Cancer Therapy. Toxins, 2017; 9 (8), 236. doi:10.3390/toxins9080236
83. Febles, C.S., Esperón, L.L., Alvarado-Mesén, J., Álvarez, F.Ll., Yglesias, A., Rodríguez, H., Santana, R.B., Lanio, M.E., Santos, I.F.P., Hernández, A.M., y Álvarez, C. Cell death mechanisms induced by pore forming toxins with special focus on actinoporins. Revista Cubana de Ciencias Biológicas, 2020; 8(2): 1-22. www.rccb.uh.cu
84. Álvarez, C., Mancheño, J.M., Martínez, D., Tejuca, M., Pazos, F., Lanio, M.E. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: Their interaction with membranes. Toxicon, 2009; 54(2009): 1135-1147. doi:10.1016/j.toxicon.2009.02.022
85. Galloso, H.M., y Oduardo, A.P. Modelos de formación de poros de las actinoporinas, citolisinas producidas por anémonas marinas. Revista Cubana de Ciencias Biológicas, 2017; (5): 1-15. www.rccb.uh.cu
86. Alvarez, C., Ros, U., Valle, A., Pedrera, L., Soto, C., Hervis, Y. P., Cabezas, S., Valiente, P.A., Pazos, F., y Lanio, M. E. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. BiophysicalReviews, 2017; 9(5), 529–544. doi:10.1007/s12551-017-0316-0
87. Leychenko, E., Isaeva, M., Tkacheva, E., Zelepuga, E., Kvetkina, A., Guzev, K., Monastyrnaya, M., y Kozlovskaya, E. MultigeneFamily of Pore-FormingToxinsfrom Sea Anemone Heteractis crispa. Marine Drugs, 2018; 16(6), 183. doi:10.3390/md16060183
88. Yap, W., & Hwang, J. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules, 2018; 23(10), 2537. doi:10.3390/molecules23102537
89. Caaveiro, J. M. M., & Tsumoto, K. Molecular basis for the activation of actinoporins by lipids. Pore-Forming Toxins, 2021; 277–306. doi:10.1016/bs.mie.2021.01.008
90. Pazos, I. F., Martı́nez, D., Tejuca, M., Valle, A., del Pozo, A., Alvarez, C., Lanio, M.E., y Lissi, E. A. Comparison of pore-forming ability in membranes of a native and a recombinant variant of Sticholysin II from Stichodactyla helianthus. Toxicon, 2003; 42(6): 571–578. doi:10.1016/s0041-0101(03)00227-7
91. Alvarado-Mesén, J., Solano-Campos, F., Canet, L., Pedrera, L., Hervis, Y. P., Soto, C., Borbón, H., Lanio, M.E., Lomote, B., Valle, A., y Alvarez, C. Cloning, purification and characterization of nigrelysin, a novel actinoporinfromthe sea anemone Anthopleura nigrescens. Biochimie, 2018; doi:10.1016/j.biochi.2018.07.013
92. Ramírez-Carreto, S., Pérez-García, E. I., Salazar-García, S. I., Bernáldez-Sarabia, J., Licea-Navarro, A., Rudiño-Piñera, E., Pérez-Martínez, L., Pedraza-Alva, G., y Rodríguez-Almazán, C. Identification of a pore-formingproteinfrom sea anemone AnthopleuradowiiVerrill (1869) venombymassspectrometry. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2019; 25(0). doi:10.1590/1678-9199-jvatitd-1474-18
93. Antonini, V., Pérez.Barzaga, S., Bampi, S., Pentón, D., Martínez., Serra, M.D., y Tejuca, M. Functional Characterization of Sticholysin I and W111C Mutant Reveals the Sequence of the Actinoporin’s Pore Assembly. PLOS ONE, 2014; 9(10): 110824. doi:10.1371/journal.pone.0110824
94. Castillo, A., Mesa, H., Cabezas, S., Valiente, P.A., Pazos, I.P., Álvarez, C.M. Lanio, M.E., y Ros, U.L. StIIR124C: un nuevo mutante para la caracterización del mecanismo de formación de poros de Sticholisina II en células. Revista Cubana de Ciencias Biológicas, 2018; 6(1): 1-10. http://www.rccb.uh.cu
95. Valle, A., Pérez-Socas, L. B., Canet, L., Hervis, Y. de la P., de Armas-Guitart, G., Martins-de-Sa, D., Barbosa, J.C., Barros, A.C., Ribeiro, J.A., Freitas, S.M., y Pazos, I. F. Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation. Scientific Reports, 2018; 8(1). doi:10.1038/s41598-018-24688-2
96. Del Valle, A., Acosta-Rivero, N., Laborde, R. J., Cruz-Leal, Y., Cabezas, S., Luzardo, M. C., … Lanio, M. E. Sticholysin II shows similar immunostimulatory properties to LLO stimulating dendritic cells and MHC-I restricted T cell responses of heterologous antigen. Toxicon, 2021; 200, 38–47. doi:10.1016/j.toxicon.2021.06.02
97. Laborde, R. J., Ishimura, M. E., Abreu-Butin, L., Nogueira, C. V., Grubaugh, D., Cruz-Leal, Y., … Lanio, M. E. Sticholysins, pore-forming proteins from a marine anemone can induce maturation of dendritic cells through a TLR4 dependent-pathway. Molecular Immunology, 2021; 2020.131, 144–154. doi:10.1016/j.molimm. 12.032
98. Rivera-de-Torre, E., Palacios-Ortega, J., Garb, J. E., Slotte, J. P., Gavilanes, J. G., & Martínez-del-Pozo, Á. Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Archives of Biochemistry and Biophysics, 2020; 108435. doi:10.1016/j.abb.2020.108435
99. Lv, X., Zhang, J., Xu, R., Dong, Y., Sun, A., Shen, Y., y Wei, D. Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells. Applied Microbiology and Biotechnology, 2016; 100(14), 6403–6413. doi:10.1007/s00253-016-7487-7
100. Ronellenfitsch, M.W., Luger, A.-M., y Steinbach, J.P. EGFR and mTOR as therapeutic targets in glioblastoma. Oncotarget, 2019; 10(46): 4721-4723. doi: 10.18632/oncotarget.27094
101. Wang, J., y Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduction and Targeted Therapy, 2019; 4(1). doi:10.1038/s41392-019-0069-2
102. Ntellas, P., Mavroeidis, L., Gkoura, S., Gazouli, I., Amylidi, A.-L., Papadaki, A., Zarkavelis, G., Mauri, D., Karpathiou, G., Kolettas, E., Batistatou, A., y Pentheroudakis, G. Old Player-New Tricks: Non Angiogenic Effects of the VEGF/VEGFR Pathway in Cancer. Cancers, 2020; 12(11), 3145. doi:10.3390/cancers12113145
103. Murer, P., Plüss, L., & Neri, D. A novel human monoclonal antibody specific to the A33 glycoprotein recognizes colorectal cancer and inhibits metastasis. British Journal of Cancer, 2019. doi: https://doi.org/10.1101/748962
104. Fuenmayor, J., Hoyos, R.G., y Montaño, R.F. Anticuerpos Monoclonales en el Tratamiento del C{ancer. Terapia Dirigida para Tumores Sólidos. RevVenezOncol, 2013; 25(4): 236-254. https://www.researchgate.net/publication/258432779
105. Kimiz-Gebologlu, I., Gulce-Iz, S., y Biray-Avci, C. Monoclonal antibodies in cáncer immunotherapy. Molecular Biology Reports, 2018; doi.org/10.1007/s11033-018-4427-x
106. Becker, N., y Benhar, I. Antibody-Based Immunotoxins for the Treatment of Cancer. Antibodies, 2012; 1(1), 39–69. doi:10.3390/antib1010039
107. Zahavi, D., y Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies, 2020; 9(3), 34. doi:10.3390/antib9030034
108. Creus, N., Massó, J., Codina, C., y Ribas, J. Anticuerpos monoclonales en Oncología. Farmacia Hospitalaria (Madrid), 2002; 26(1): 28-43.
109. Cao, Y., Marks, J. D., Marks, J. W., Cheung, L. H., Kim, S., y Rosenblum, M. G. Construction and Characterization of Novel, Recombinant Immunotoxins Targeting the Her2/neu Oncogene Product: In vitro and In vivo Studies. Cancer Research, 2009; 69(23), 8987–8995. doi:10.1158/0008-5472.can-09-2693.
110. Hajighasemlou, S.,Alebouyeh, M., Rastegar, H., Taghizadeh, M., Mirmoghtadaei, M., Moayedi, B.,Ahmadzadeh,M., Parvizpour,F., Johari,B., Moslemi,M., yFarajollahi, M. Preparation of Immunotoxin Herceptin-Botulinum and Killing Effects on Two Breast Cancer Cell Lines, Asian Pac J Cancer Prev, 2015; 16 (14): 5977-5981.doi:http://dx.doi.org/10.7314/APJCP.2015.16.14.5977
111. Hassan, R., Alewine, C., y Pastan, I. New Life for Immunotoxin Cancer Therapy. Clinical Cancer Research, 2015; 22(5), 1055–1058. doi:10.1158/1078-0432.ccr-15-1623
112. Andersson, Y., Haavardtun, S.I., Davidson, B., Dorum, A., Fleten, K.F., Fodstand, O., y Flatmark, K. MOC31PE immunotoxin – targeting peritoneal metastasis from epithelial ovarian cancer. Oncotarget, 2017; 8 (37): 61800-61809. www.impactjournals.com/oncotarget
113. Pilbeam, K., Wang, H., Taras, E., Bergerson, R.J., Ettestad, B., DeFor, T., Borgatti, A., Vallera, D.A., y Verneris, M.R. Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urokinase and epidermal growth factor receptors. Oncotarget, 2018; 9(15): 11938-11947. www.impactjournals.com/oncotarget/
114. Hagerty, B. L., Pegna, G. J., Xu, J., Tai, C.-H., & Alewine, C. Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules, 2020, 10(7), 973. doi:10.3390/biom10070973
115. Hassan, R., Alewine, C., Mian, I., Spreafico, A., Siu, L. L., Gomez‐Roca, C., Delord, J-P., Italiano, A., Lassen, U., Soria, J-C., Bahleda, R., Thomas, A., Steinberg, S.M., Peer, C.J., Pharm, W.D., Niederfellner, G., Naeglelen, V.M., y Pastan, I. Phase 1 study of theimmunotoxin LMB‐100 in patientswithmesothelioma and other solid tumors expressing mesothelin. Cancer, 2020. doi:10.1002/cncr.33145
116. Mazor, R., &Pastan, I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Frontiers in Immunology, 2020; 11. doi:10.3389/fimmu.2020.01261
117. Akbari, B., Farajnia, S., Ahdi Khosroshahi, S., Safari, F., Yousefi, M., Dariushnejad, H., & Rahbarnia, L. Immunotoxins in cancer therapy: Review and update. International Reviews of Immunology, 2017; 36(4), 207–219. doi:10.1080/08830185.2017.1284211
118. Duvic, M. Optimizing denileukin diftitox (Ontak) therapy. Haematological reports, 2006; 2 (13): 57-60.
119. Raedler, L. Lumoxiti (Moxetumomab Pasudotox-tdfk) First CD22-Directed Cytotoxin Approved for Relapsed or Refractory Hairy-Cell Leukemia. American Health&DrugBenefits, 2019; 12: 52-54
120. Raedler, L. Kadcyla (Ado-TrastuzumabEmtansine): First Antibody-Drug Conjugate Approved for the Treatment of HER2-Positive Metastatic Breast Cancer, 2014; American Health & Drug Benefits, 7: 110-114.
121. Pranchevicius, M.-C. S., & Vieira, T. R. Production of recombinant immunotherapeutics for anticancer treatment. Bioengineered, 2013; 4(5), 305–312. doi:10.4161/bioe.24666
122. Galstyan, A., Markman, J. L., Shatalova, E. S., Chiechi, A., Korman, A. J., Patil, R., Klymyshyn, D., Tourtellotte, W.G., Israel, L., Braubach, O., Ljubimov, V.A., Mashou, L.A., Ramesh, A., Grodzinski, Z.B., Penichet, M.L., Black, K.L., Holler, E., Sun, T., Ding, H., Ljubimov, A.V., y Ljubimova, J. Y. Blood–brainbarrier permeable nano immunoconjugates induce local immune responses for glioma therapy. NatureCommunications, 2019; 10(1). doi:10.1038/s41467-019-11719-3
123. Hetzel, C., Bachran, C., Tur, M., Fuchs, H., & Stocker, M. Improved Immunotoxins with Novel Functional Elements. Current Pharmaceutical Design, 2009; 15(23), 2700–2711. doi:10.2174/138161209788923930
124. Potrich, C., Tomazzolli, R., Dalla Serra, M., Anderluh, G., Malovrh, P., Maček, P., Menestrina, G., y Tejuca, M. Cytotoxic Activity of a Tumor Protease-Activated Pore-Forming Toxin. Bioconjugate Chemistry, 2005; 16(2), 369–376. doi:10.1021/bc049873z
125. Mutter, N. L., Soskine, M., Huang, G., Albuquerque, I. S., Bernardes, G. J. L., &Maglia, G. Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution. ACS Chemical Biology, 2018.doi:10.1021/acschembio.8b00720
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista provee acceso libre e inmediato a su contenido bajo el principio de que hacer disponible gratuitamente la investigación al público apoya a un mayor intercambio de conocimiento global.
Esto significa que se permite su copia y distribución por cualquier medio siempre que mantenga el reconocimiento de sus autores, no haga uso comercial de las obras y no realice ninguna modificación de ellas.
El envío de manuscritos, el procesamiento y la publicación no ofrece ningún coste a los autores, es totalmente gratis.