Inmunotoxinas en Terapias Dirigidas contra el Cáncer

Arasai Vázquez

Texto completo:

PDF

Resumen

Introducción: En los últimos años se han estudiado las inmunotoxinas que son proteínas quiméricas formadas por conjugación de un anticuerpo monoclonal  (AcM) a  una toxina proteica para su empleo en la terapia del cáncer. En este trabajo se reporta una actualización de las  investigaciones de los últimos diez años en el uso de las inmunotoxinas como herramientas para la terapia del cáncer. Objetivo: Mencionar el concepto de inmunotoxinas y el estado del arte en los últimos diez años de su uso en la terapias dirigidas contra el cáncer. Métodos: Se realizó una búsqueda de artículos en inglés y español, en los últimos diez años con relación a la metodología de obtención, tipos de inmunotoxinas y de los resultados obtenidos en ensayos preclínicos y clínicos. Resultados: Se evalúan diversas inmunotoxinas en ensayos clínicos Fase II y III. En el 2018 se aprobó el uso de la inmunotoxina Lumoxiti por la FDA, (Food and Drug Administration), para el tratamiento de la leucemia de células pilosas lo que confirma  las posibilidades terapéuticas de estas moléculas. Conclusiones: Los resultados de diversos grupos de trabajo manifiestan un marcado interés del uso de las inmunotoxinas en Oncología como una alternativa para superar los efectos adversos de los citóstáticos.

Referencias

Cáncer.gov [Internet]. Estados Unidos: Cancer Statistics, 2020[Actualizado el 25 de Agosto de 2020, citado 10 de diciembre del 2020] Disponible en: https://www.cancer.gov/about-cancer/understanding/statistics

Rebecca, L., Siegel, Kimberly D., Miller, Ahmedin Jemal. Cancer Statistics, 2020. CA. 2020;7-30.

López, L. M., Aloma, I. A., Sánchez, E., Martínez, M. A., Alonso, I., Bess, S. Anuario Estadístico de salud 2018. Gaceta Oficial de la República de Cuba. 2019; 59: 39-45; 55-83.

Aloma, I. A., Sánches, E., Martínez, M. A., López, L. M., Alonso I., Bess, S. Anuario Estadístico de salud 2019. Gaceta Oficial de la República de Cuba. 2020; Volumen 59: 39-43; 55-65.

Allahyari, H., Heidari, S., Ghamgosha, M., Saffarian P. y Amani, J. Immunotoxin: A new tool for cancer therapy. Tumor Biology. 2017; 30: 2-8.

Zhong, L., Li, y., Xiong, L., Wang, W., Wu, M.,Yuan, W., Chenyu, T., Miao, Z., Wang, T. & Yamg, Sh. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Nature. 2021; 6:201; https://doi.org/10.1038/s41392-021-00572-w.

Suryyadev, Y. Y., Kumar, V. A., Kumar, Y. R.; Vimal Y. y Piyush Y. Targeted Cancer Theraphy. Researcher’s Reflection, 2017; 1(1): 11-17. http://pgi.edu.in.

Ke, X. y Shen, L. Molecular targeted thepaphy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine. 2017; 1: 69-75. http://dx.doi.org/10.1016/j.flm.2017.06.001

Hwang, K., Yoon, J. H., Ji H. Lee y Lee, S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines. 2021; 9 (39): 2-17. https://www.mdpi.com/journal/biomedicines

Haefeez, U., Parakh, S., Gan, H., & Scott, A. Antibody-Drug Conjugates for Cancer Therapy. Molecules, 2020; 25 (20), 4764; doi: http://doi.org/10.3390/molecules25204764.

Biteghe, F. A. N., Chalomie, N. E. T., Mungra, N., Vignaux, G., Gao, N., Vergeade, A., Okem, A., Naran, K., De La Croix, J., & Barth, S. Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines, 2020; 8(9), 327. doi:10.3390/biomedicines8090327

Kimiz-Gebologlu, I., Gulce-Iz, S., & Biray-Avci, C. Monoclonal antibodies in cancer immunotherapy. Molecular Biology Reports, 2018; doi:10.1007/s11033-018-4427-x

Mercatelli, D., Bortolotti, M., Bazzocchi, A., Bolognesi, A. y Polito, L. ImmunoconjugatesforOsteosarcomaTherapy: PreclinicalExperiences and FuturePerspectives. Biomedicines, 2018; 6 (19): 2-7. www.mdpi.com/journal/biomedicines.

Wei, J., Bera, T. K., Liu, X. F., Zhou, Q., Onda, M., Ho, M., Tai, Ch-Hs., Pastan, I. Recombinant immunotoxins with albumin-binding domains have long half-lives and high antitumor activity. Proceedings of the National Academy of Sciences, 2018; 115(15), E3501–E3508. doi:10.1073/pnas.1721780115.

Polito, L., Djemil, A., y Bortolotti, M. Plant Toxin-Based Immunotoxins for Cancer Therapy: A Short Overview. Biomedicines, 2016, 4 (12): 1-9. doi:10.3390/biomedicines4020012.

Shan, L., Liu, Y. y Wang, P. Recombinant Immunotoxin Therapy of Solid Tumors: Challenges and Strategies. NIH Public Access, J Basic Clin Med. 2014; 2(2): 1–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192646

Wei, Y., Yap y Jung S., Hwang. Response of cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules, 2018; 23 (10): https://www.mdpi.com/1420-3049/23/10/2537/htm.

Köhler, G., y Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517), 495–497. doi:10.1038/256495a0

Kreitman, R., & Pastan, I. Immunotoxins: From Desing to Clinical Application. Biomolecules, 2021, 11 (11), 1696; https://doi.org/10.3390/biom11111696

Avila A, Calderon C, Pérez R, Alvarez I, Pons C, Ortiz A y Pereda C. Construction and Biological in vitro evaluation of Immunotoxins by Linking of monoclonal antibodies with a Hemolytic Toxin from a Sea Anemone. Pharmacology online, 2006; 3: 384-391.

Avila A, Calderon C, Pérez R, Pons C, Pereda C y Ortiz A. Construction of an Immunotoxins by Linking a Monoclonal Antibody against the human epidermal growth factor receptor and a hemolytic toxin. Biol Res, 2007; 40: 173-183.

Wang, Z., Duran-Struuck, R., Crepeau, R., Matar, A., Hanekamp, I., Srinivasan, S., Neville D.M., Sachs D.H., y Huang, C. A. Development of a Diphtheria Toxin Based Antiporcine CD3 Recombinant Immunotoxin. Bioconjugate Chemistry, 2011; 22(10), 2014–2020. doi:10.1021/bc200230h

Antignani, A., Ho, E. C. H., Bilotta, M. T., Qiu, R., Sarnvosky, R., y FitzGerald, D. J. Targeting Receptors on Cancer Cells with Protein Toxins. Biomolecules, 2020; 10(9), 1331. doi:10.3390/biom10091331

Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978;15:245–250. https://www.biorxiv.org/content/10.1101/420158v1.full

Shafiee, F., Aucoin, M. G., & Jahanian-Najafabadi, A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Frontiers in Microbiology, 2019; 10. doi:10.3389/fmicb.2019.02340

Hamamichi, S., Fukuhara, T., & Hattori, N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins, 2020; 12(10), 658. doi:10.3390/toxins12100658

Zuppone, S., Fabbrini, M. S., y Vago, R. Hosts for Hostile Protein Production: The Challenge of Recombinant Immunotoxin Expression. Biomedicines, 2019; 7(2), 38. doi:10.3390/biomedicines7020038

Yap, W., y Hwang, J. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules, 2018; 23(10), 2537. doi:10.3390/molecules23102537

Wu, T., & Zhu, J. Recent development and optimization of pseudomonas aeruginosa exotoxin immunotoxins in cancer therapeutic applications International Immunopharmacology, 2021; 96, 107759. doi:10.1016/j.intimp.2021.107759.

Leshem, Y., & Pastan, I. Pseudomonas Exotoxin Immunotoxins and Anti-Tumor Immunity: From Observations at the Patient’s Bedside to Evaluation in Preclinical Models. Toxins, 2019; 11(1), 20. doi:10.3390/toxins11010020

Kreitman, R. J., Arons, E., Stetler-Stevenson, M., Fitzgerald, D. J. P., Wilson, W. H., &Pastan, I. Recombinant immunotoxins and other therapies for relapsed/refractory hairy cell leukemia. Leukemia & Lymphoma, 2011; 52(sup2), 82–86. doi:10.3109/10428194.2011.565843

Ross, W. C. J., Thorpe, P. E., Cumber, A. J., Edwards, D. C., Hinson, C. A., y Davies, A. J. S.: Increased Toxicity of Diphtheria Toxin for Human Lymphoblastoid Cells following Covalent Linkage to Anti-(human lymphocyte) Globulin or Its F(ab’)2 Fragment. European Journal of Biochemistry, 1980; 104(2), 381–390. doi:10.1111/j.1432-1033.1980.tb04438.x

Foss, F. M. DAB389IL-2 (ONTAK): A Novel Fusion Toxin Therapy for Lymphoma. Clinical Lymphoma, 2000; 1(2), 110–116. doi:10.3816/clm.2000.n.009

Wawrzynczak, E. J.: Systemic immunotoxin therapy of cancer: advances and prospects. Br. J. Cancer, 1991; (64): 624-630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1977692/

Jiao, P., Zhang, J., Dong, Y., Wei, D., & Ren, Y. Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Applied Microbiology and Biotechnology, 2018; doi:10.1007/s00253-018-9291-z

Avila, A., Mateo, C., y Lage, A. A New Immunotoxin built by linking a hemolytic toxin to a monoclonalantibody specific for immature T lymphocytesInt.J.Cancer,1988; 42: 568-571.

Antignani, A., y FitzGerald, D. Immunotoxins: The Role of the Toxin. Toxins, 2013, 5: 1486-1502; doi:10.3390/toxins5081486.

Thrush, G. R., Lark, L. R., Clinchy, B. C., &Vitetta, E. S. IMMUNOTOXINS: An Update. AnnualReview of Immunology, 1996; 14(1): 49–71. doi:10.1146/annurev.immunol.14.1.49

Kreitman, R. J. Immunotoxins for targeted cancer therapy. The AAPS Journal, 2006; 8(3), E532–E551. doi:10.1208/aapsj080363

Li, Z., Yu, T., Zhao, P y Ma, Jie. Immunotoxins and Cancer Therapy. Cellular & Molecular Immunology, 2005; 2(2): 106-112. http://www.cmi.ustc.edu.cn/2/2/106.pdf

Pastan, I., Hassan, R., FitzGerald, D. J., &Kreitman, R. J. Immunotoxin therapy of cancer. Nature Reviews Cancer, 2006; 6(7), 559–565. doi:10.1038/nrc1891

Mateo, C., Avila, A., Rodriguez, M., y Lage, A. Preparacion de una inmunotoxina por acoplamiento de un monoclonal contra linfocitos t y una toxina hemolitica de origen marino, Rec Cubana Oncol, 1987; 3(2): 281-290.

Avila, A., Mateo, C., y Lage, A. A carcinoembryonic antigen-directed immunotoxin built by linking a monoclonal antibody to a hemolitic toxin, Int. J. Cancer, 1989;43: 926-929.

Avila, A., Calderón, C., Pérez, R., Alvarez, I., Pons, C., Ortiz, A., y Preda, C. Construction and Biological in vitro evaluation of immunotoxins by linking of monoclonal antibodies with a haemolitic toxin from a sea anemone, Pharmacology online, 2006; 3: 384-391.

Avila, A., Calderón, C., Pérez, R., Pons, C., Pereda, C., y Ortiz, A. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin, Biol Res, 2007;40: 173-183.

Magadán, R., Mateo, C., y A, Lage. Inmunotoxinas. Síntesis y evaluación biológica preliminar de un conjugado AcM anti T3-ricina cadena A, Rev. Interferón y Biotecnología, 1988; 4(3): 267-269. ISSN 0138-8878.

Tejuca, M., Pérez-Barzaga, V., Pazos, F., Álvarez, C., y Lanio, M.E. Construction of sea anemone cytolysin-based immunotoxins for selective killing of cancer cells, Rev. Cub. Física, 2009; 26(1): 15-22.

Tejuca, M., Díaz, I., Figueredo, R., Roque, L., Pasos, F., Martínez, D., Iznaga-Escobar, N., Pérez, R., Alvarez, C. y Lanio, M. Construction of an immunotoxin with the pore forming protein StI and ior C5, a monoclonal antibody against a colon cáncer cell line, International Immunopatoligy, 2004; 4: 731-744.

Tejuca, M., Anderluh, G. y Dalla, M. Sea anemone cytolysins as toxic components of immunotoxins, Toxicon, 2009; 54: 1206-1214.doi:10.1016/j.toxicon.2009.02.025

Lee, S., Park, S., Nguyen, T. M., Lee, E., Kim, J., Baek, S., Kim, J. Y., y Choe, H. A chemical conjugate between HER2-targeting antibody fragment and Pseudomonas exotoxin A fragment demonstrates cytotoxic effects on HER2-expressing breast cancer cells, 2019; 52(8): 496-501. doi: 10.5483/BMBRep.2019.52.8.250.

Vitetta, E. S., Krolick, K.A., Miyama-Inaba, M., Cushley, W., y Uhr, J.W., Immunotoxins: a new approach to cancer therapy, 1983; 11;219(4585):644-50. doi: 10.1126/science.6218613

Mahmoudi, R., Dianat-Moghadam, H., Poorebrahim, M., Siapoush, S., Poortahmasebi, V., Salahlou, R., & Rahmati. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int, 2021; 21: 470. https://doi.org/10.1186/s12935-021-02182-6

Shan, L., Liu, Y., y Wang, P. Recombinant Immunotoxin Therpay of Solid Tumors: Challenges and Strategies. J Basic Clin Med. 2013; 2 (2):1-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192646/pdf/nihms581768.pdf

Sanz, L.; Ibáñez-Pérez, R.; Guerrero-Ochoa, P.; Lacadena, J.; Anel, A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021, 9, 1729. https://doi.org/10.3390/ biomedicines9111729

Kim, J-S., Jun, S-Y., y Kim, Y-S. Critical Issues in the Development of Immunotoxins for Anticancer Therapy. Journal of Pharmaceutical Sciences, 2020; 109: 104-115. https://doi.org/10.1016/j.xphs.2019.10.037

Alewine, C., Hassan, R., & Pastan, I. Advances in Anticancer Immunotoxin Therapy. TheOncologist, 2015, 20(2), 176–185. doi:10.1634/theoncologist.2014-0358

Li, M., Liu, Z.-S., Liu, X.-L., Hui, Q., Lu, S.-Y., Qu, L.-L., Li, Y.-S., Zhou, Y., Ren, H.-L., y Hu, P. Clinical targeting recombinant immunotoxins for cancer therapy. OncoTargets and Therapy, 2017;(10) 3645–3665. doi10.2147ott.s134584

Ruiz-de-la-Herrán, J., Tomé-Amat, J., Lázaro-Gorines, R., Gavilanes, J. G., &Lacadena, J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxinα-Sarcin- or RNase T1-Based Immunotoxins. Toxins, 2019; 11(10), 593. doi:10.3390/toxins11100593

Pirzer, T., Becher, K.-S., Rieker, M., Meckel, T., Mootz, H. D., & Kolmar, H. Generation of Potent Anti-HER1/2 Immunotoxins by Protein Ligation Using Split Inteins. ACS ChemicalBiology, 2018; 13(8), 2058–2066. doi:10.1021/acschembio.8b00222

Ayala, C. Los camélidos sudamericanos. Revista de Investigación e Innovación Agropecuaria de Recursos Naturales, 2018; 2409-1618. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2409-16182018000300003&lng=es&nrm=iso

Dhillon, S. Moxetumomab Pasudotox: First Global Approval. Drugs. 2018; 78: 1763-1767. doi:10.1007/s40265-018-1000-9

Zhu, S., Liu, Y., Wang, P. C., Gu, X., & Shan, L. Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. Bio Med Research International, 2017; 1–18. doi:10.1155/2017/7929286

Ruiz de la Herrán J. Diseño de variantes optimizadas de inmunotoxinas basadas en ribnucleasas fúngicas: efecto antitumoral in vitro e in vivo. [Tesis Doctoral]. Madrid: Universidad Complutense de Madrid. Facultad de Ciencias Químicas; 2021

Jones, T. D., Hearn, A. R., Holgate, R. G. E., Kozub, D., Fogg, M. H., Carr, F. J., … Gehlsen, K. R.. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+T cell epitopes and its use as an immunotoxin warhead. Protein Engineering Design and Selection, 2016; 29(11), 531–540. doi:10.1093/protein/gzw045

Ibáñes-Pérez, R., Guerrero-Ochoa, P., Al-Wasaby, S., Navarro, R., Tapia-Galisteo, A., Miguel, D., Gonzalo, O., Conde, B., Martínez-Lostao, L., Hurtado-Guerrero, R., Sanz, L., y Anel, A. Anti-tumoral potente of human granulysin-based, CEA-targeted cytolutic immunotoxin. Oncoinmmunology, 2019 (8)1-11. doi: 10.1080/2162402X.2019.1641392

Rust, A., Patridge, L.J., Davletov, B., y Hautbergue, H.M. The Use of Plant-Derived Ribosome Inactivating Proteins in Immunotoxin Development: Past, Present and Future Generations. Toxins, 2017; 9 (344) 15. doi:10.3390/toxins9110344

Fleming, B. D., & Ho, M. Development of Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer: An Update. Biomolecules, 2020; 10(6), 934. doi:10.3390/biom10060934

Słomińska-Wojewódzka, M., &Sandvig, K. Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro. Antibodies, 2013; 2(4), 236–269. doi:10.3390/antib2020236

Zuppone, S., Assalini, C., Minici, C., Bertagnoli, S., Branduardi, P., Degano, M., Fabbrini, M.S., Montorsi, F., Salonia, A., y Vago, R. The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP. Scientific Reports, 2020; 10(1). doi:10.1038/s41598-020-59313-8

Lord, J.M., Roberts, L.M., y Robertus, J.D. Ricin: structure, mode of action, and some current applications. FASEB Journal, 1994; (8): 201-208. www.fasebj.org

Hayoun MA, Kong EL, Smith ME, et al. Ricin Toxicity. [Updated 2021 Jul 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021; Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441948/

Lin, Y.; Xu, L.; Li, Y.; Wu, X.; Liu, Y.; Zhu, H.; Zhou, H. Ribosome-Inactivating Proteins of Bougainvillea glabra Uncovered Polymorphism and Active Site Divergence. Toxins 2021, 13, 331. https://doi.org/10.3390/toxins 13050331

Giansanti, F., Flavell, D., Angelucci, F., Fabbrini, M., &Ippoliti, R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins, 2018; 10(2), 82. doi:10.3390/toxins10020082

Wayne, A.S., FitzGerald, D., Kreitman, R.J., y Pastan, I. Immunotoxins for leukemia. Blood, 2014; 16(123): 2470-2477. doi: 10.1182/blood2014-01-492256.

Mei, X., Chen, J., Wang, J., y Zhu, J. Immunotoxin: Targeted Toxin Delivery for Cancer Therapy. Pharmaceut Front, 2019; (1): 33-45. doi.org/ 10.1055/s-0039-1700507.

Michalska, M., y Wolf, P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Frontiers in Microbiology, 2015; 963 (6): 7. doi: 10.3389/fmicb.2015.00963.

Chandramohan, V., Sampson, J. H., Pastan, I. H., &Bigner, D. D. Immunotoxin Therapy for Brain Tumors. Translational Immunotherapy of Brain Tumors, 2017; 227–260. doi:10.1016/b978-0-12-802420-1.00010-7

Sokolova, E., Guryev, E., Yudintsev, A., Vodeneev, V., Deyev, S., Balalaeva, I. HER2-specific recombinant immunotoxin 4D5scFv-PE40 passes through retrograde trafficking route and forces cells to enter apoptosis. Oncotartget, 2017; 8(13): 22048-22058. www.impactjournals.com/oncotarget

Dieffenbach, M., &Pastan, I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules, 2020; 10(7), 979. doi:10.3390/biom10070979

Hu, Bo., Gou, W., Wang, L., Wang, J., Liu, X., y Jiao, B. Purification and Characterization of Gigantoxin-4, a New Actinoporin from the Sea Anemone Stichodactyla gigantea. Int. J. Biol. Sci, 2011; 7(6): 729-739. doi:10.7150/ijbs.7.729

García-Ortega, L., Alegre-Cebolla, J., García-Linales, S., Bruix, M., Martínez-del-Pozo, A., y Gavilanes, J. G. 2011; 9(1808): 2275-2288. doi.org/10.1016/j.bbamem.2011.05.012

Zahaf, N.-I., y Schmidt, G. Bacterial Toxins for Cancer Therapy. Toxins, 2017; 9 (8), 236. doi:10.3390/toxins9080236

Febles, C.S., Esperón, L.L., Alvarado-Mesén, J., Álvarez, F.Ll., Yglesias, A., Rodríguez, H., Santana, R.B., Lanio, M.E., Santos, I.F.P., Hernández, A.M., y Álvarez, C. Cell death mechanisms induced by pore forming toxins with special focus on actinoporins. Revista Cubana de Ciencias Biológicas, 2020; 8(2): 1-22. www.rccb.uh.cu

Álvarez, C., Mancheño, J.M., Martínez, D., Tejuca, M., Pazos, F., Lanio, M.E. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: Their interaction with membranes. Toxicon, 2009; 54(2009): 1135-1147. doi:10.1016/j.toxicon.2009.02.022

Galloso, H.M., y Oduardo, A.P. Modelos de formación de poros de las actinoporinas, citolisinas producidas por anémonas marinas. Revista Cubana de Ciencias Biológicas, 2017; (5): 1-15. www.rccb.uh.cu

Alvarez, C., Ros, U., Valle, A., Pedrera, L., Soto, C., Hervis, Y. P., Cabezas, S., Valiente, P.A., Pazos, F., y Lanio, M. E. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. BiophysicalReviews, 2017; 9(5), 529–544. doi:10.1007/s12551-017-0316-0

Leychenko, E., Isaeva, M., Tkacheva, E., Zelepuga, E., Kvetkina, A., Guzev, K., Monastyrnaya, M., y Kozlovskaya, E. MultigeneFamily of Pore-FormingToxinsfrom Sea Anemone Heteractis crispa. Marine Drugs, 2018; 16(6), 183. doi:10.3390/md16060183

Yap, W., & Hwang, J. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules, 2018; 23(10), 2537. doi:10.3390/molecules23102537

Caaveiro, J. M. M., & Tsumoto, K. Molecular basis for the activation of actinoporins by lipids. Pore-Forming Toxins, 2021; 277–306. doi:10.1016/bs.mie.2021.01.008

Pazos, I. F., Martı́nez, D., Tejuca, M., Valle, A., del Pozo, A., Alvarez, C., Lanio, M.E., y Lissi, E. A. Comparison of pore-forming ability in membranes of a native and a recombinant variant of Sticholysin II from Stichodactyla helianthus. Toxicon, 2003; 42(6): 571–578. doi:10.1016/s0041-0101(03)00227-7

Alvarado-Mesén, J., Solano-Campos, F., Canet, L., Pedrera, L., Hervis, Y. P., Soto, C., Borbón, H., Lanio, M.E., Lomote, B., Valle, A., y Alvarez, C. Cloning, purification and characterization of nigrelysin, a novel actinoporinfromthe sea anemone Anthopleura nigrescens. Biochimie, 2018; doi:10.1016/j.biochi.2018.07.013

Ramírez-Carreto, S., Pérez-García, E. I., Salazar-García, S. I., Bernáldez-Sarabia, J., Licea-Navarro, A., Rudiño-Piñera, E., Pérez-Martínez, L., Pedraza-Alva, G., y Rodríguez-Almazán, C. Identification of a pore-formingproteinfrom sea anemone AnthopleuradowiiVerrill (1869) venombymassspectrometry. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2019; 25(0). doi:10.1590/1678-9199-jvatitd-1474-18

Antonini, V., Pérez.Barzaga, S., Bampi, S., Pentón, D., Martínez., Serra, M.D., y Tejuca, M. Functional Characterization of Sticholysin I and W111C Mutant Reveals the Sequence of the Actinoporin’s Pore Assembly. PLOS ONE, 2014; 9(10): 110824. doi:10.1371/journal.pone.0110824

Castillo, A., Mesa, H., Cabezas, S., Valiente, P.A., Pazos, I.P., Álvarez, C.M. Lanio, M.E., y Ros, U.L. StIIR124C: un nuevo mutante para la caracterización del mecanismo de formación de poros de Sticholisina II en células. Revista Cubana de Ciencias Biológicas, 2018; 6(1): 1-10. http://www.rccb.uh.cu

Valle, A., Pérez-Socas, L. B., Canet, L., Hervis, Y. de la P., de Armas-Guitart, G., Martins-de-Sa, D., Barbosa, J.C., Barros, A.C., Ribeiro, J.A., Freitas, S.M., y Pazos, I. F. Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation. Scientific Reports, 2018; 8(1). doi:10.1038/s41598-018-24688-2

Del Valle, A., Acosta-Rivero, N., Laborde, R. J., Cruz-Leal, Y., Cabezas, S., Luzardo, M. C., … Lanio, M. E. Sticholysin II shows similar immunostimulatory properties to LLO stimulating dendritic cells and MHC-I restricted T cell responses of heterologous antigen. Toxicon, 2021; 200, 38–47. doi:10.1016/j.toxicon.2021.06.02

Laborde, R. J., Ishimura, M. E., Abreu-Butin, L., Nogueira, C. V., Grubaugh, D., Cruz-Leal, Y., … Lanio, M. E. Sticholysins, pore-forming proteins from a marine anemone can induce maturation of dendritic cells through a TLR4 dependent-pathway. Molecular Immunology, 2021; 2020.131, 144–154. doi:10.1016/j.molimm. 12.032

Rivera-de-Torre, E., Palacios-Ortega, J., Garb, J. E., Slotte, J. P., Gavilanes, J. G., & Martínez-del-Pozo, Á. Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Archives of Biochemistry and Biophysics, 2020; 108435. doi:10.1016/j.abb.2020.108435

Lv, X., Zhang, J., Xu, R., Dong, Y., Sun, A., Shen, Y., y Wei, D. Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells. Applied Microbiology and Biotechnology, 2016; 100(14), 6403–6413. doi:10.1007/s00253-016-7487-7

Ronellenfitsch, M.W., Luger, A.-M., y Steinbach, J.P. EGFR and mTOR as therapeutic targets in glioblastoma. Oncotarget, 2019; 10(46): 4721-4723. doi: 10.18632/oncotarget.27094

Wang, J., y Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduction and Targeted Therapy, 2019; 4(1). doi:10.1038/s41392-019-0069-2

Ntellas, P., Mavroeidis, L., Gkoura, S., Gazouli, I., Amylidi, A.-L., Papadaki, A., Zarkavelis, G., Mauri, D., Karpathiou, G., Kolettas, E., Batistatou, A., y Pentheroudakis, G. Old Player-New Tricks: Non Angiogenic Effects of the VEGF/VEGFR Pathway in Cancer. Cancers, 2020; 12(11), 3145. doi:10.3390/cancers12113145

Murer, P., Plüss, L., & Neri, D. A novel human monoclonal antibody specific to the A33 glycoprotein recognizes colorectal cancer and inhibits metastasis. British Journal of Cancer, 2019. doi: https://doi.org/10.1101/748962

Fuenmayor, J., Hoyos, R.G., y Montaño, R.F. Anticuerpos Monoclonales en el Tratamiento del C{ancer. Terapia Dirigida para Tumores Sólidos. RevVenezOncol, 2013; 25(4): 236-254. https://www.researchgate.net/publication/258432779

Kimiz-Gebologlu, I., Gulce-Iz, S., y Biray-Avci, C. Monoclonal antibodies in cáncer immunotherapy. Molecular Biology Reports, 2018; doi.org/10.1007/s11033-018-4427-x

Becker, N., y Benhar, I. Antibody-Based Immunotoxins for the Treatment of Cancer. Antibodies, 2012; 1(1), 39–69. doi:10.3390/antib1010039

Zahavi, D., y Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies, 2020; 9(3), 34. doi:10.3390/antib9030034

Creus, N., Massó, J., Codina, C., y Ribas, J. Anticuerpos monoclonales en Oncología. Farmacia Hospitalaria (Madrid), 2002; 26(1): 28-43.

Cao, Y., Marks, J. D., Marks, J. W., Cheung, L. H., Kim, S., y Rosenblum, M. G. Construction and Characterization of Novel, Recombinant Immunotoxins Targeting the Her2/neu Oncogene Product: In vitro and In vivo Studies. Cancer Research, 2009; 69(23), 8987–8995. doi:10.1158/0008-5472.can-09-2693.

Hajighasemlou, S.,Alebouyeh, M., Rastegar, H., Taghizadeh, M., Mirmoghtadaei, M., Moayedi, B.,Ahmadzadeh,M., Parvizpour,F., Johari,B., Moslemi,M., yFarajollahi, M. Preparation of Immunotoxin Herceptin-Botulinum and Killing Effects on Two Breast Cancer Cell Lines, Asian Pac J Cancer Prev, 2015; 16 (14): 5977-5981.doi:http://dx.doi.org/10.7314/APJCP.2015.16.14.5977

Hassan, R., Alewine, C., y Pastan, I. New Life for Immunotoxin Cancer Therapy. Clinical Cancer Research, 2015; 22(5), 1055–1058. doi:10.1158/1078-0432.ccr-15-1623

Andersson, Y., Haavardtun, S.I., Davidson, B., Dorum, A., Fleten, K.F., Fodstand, O., y Flatmark, K. MOC31PE immunotoxin – targeting peritoneal metastasis from epithelial ovarian cancer. Oncotarget, 2017; 8 (37): 61800-61809. www.impactjournals.com/oncotarget

Pilbeam, K., Wang, H., Taras, E., Bergerson, R.J., Ettestad, B., DeFor, T., Borgatti, A., Vallera, D.A., y Verneris, M.R. Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urokinase and epidermal growth factor receptors. Oncotarget, 2018; 9(15): 11938-11947. www.impactjournals.com/oncotarget/

Hagerty, B. L., Pegna, G. J., Xu, J., Tai, C.-H., & Alewine, C. Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules, 2020, 10(7), 973. doi:10.3390/biom10070973

Hassan, R., Alewine, C., Mian, I., Spreafico, A., Siu, L. L., Gomez‐Roca, C., Delord, J-P., Italiano, A., Lassen, U., Soria, J-C., Bahleda, R., Thomas, A., Steinberg, S.M., Peer, C.J., Pharm, W.D., Niederfellner, G., Naeglelen, V.M., y Pastan, I. Phase 1 study of theimmunotoxin LMB‐100 in patientswithmesothelioma and other solid tumors expressing mesothelin. Cancer, 2020. doi:10.1002/cncr.33145

Mazor, R., &Pastan, I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Frontiers in Immunology, 2020; 11. doi:10.3389/fimmu.2020.01261

Akbari, B., Farajnia, S., Ahdi Khosroshahi, S., Safari, F., Yousefi, M., Dariushnejad, H., & Rahbarnia, L. Immunotoxins in cancer therapy: Review and update. International Reviews of Immunology, 2017; 36(4), 207–219. doi:10.1080/08830185.2017.1284211

Duvic, M. Optimizing denileukin diftitox (Ontak) therapy. Haematological reports, 2006; 2 (13): 57-60.

Raedler, L. Lumoxiti (Moxetumomab Pasudotox-tdfk) First CD22-Directed Cytotoxin Approved for Relapsed or Refractory Hairy-Cell Leukemia. American Health&DrugBenefits, 2019; 12: 52-54

Raedler, L. Kadcyla (Ado-TrastuzumabEmtansine): First Antibody-Drug Conjugate Approved for the Treatment of HER2-Positive Metastatic Breast Cancer, 2014; American Health & Drug Benefits, 7: 110-114.

Pranchevicius, M.-C. S., & Vieira, T. R. Production of recombinant immunotherapeutics for anticancer treatment. Bioengineered, 2013; 4(5), 305–312. doi:10.4161/bioe.24666

Galstyan, A., Markman, J. L., Shatalova, E. S., Chiechi, A., Korman, A. J., Patil, R., Klymyshyn, D., Tourtellotte, W.G., Israel, L., Braubach, O., Ljubimov, V.A., Mashou, L.A., Ramesh, A., Grodzinski, Z.B., Penichet, M.L., Black, K.L., Holler, E., Sun, T., Ding, H., Ljubimov, A.V., y Ljubimova, J. Y. Blood–brainbarrier permeable nano immunoconjugates induce local immune responses for glioma therapy. NatureCommunications, 2019; 10(1). doi:10.1038/s41467-019-11719-3

Hetzel, C., Bachran, C., Tur, M., Fuchs, H., & Stocker, M. Improved Immunotoxins with Novel Functional Elements. Current Pharmaceutical Design, 2009; 15(23), 2700–2711. doi:10.2174/138161209788923930

Potrich, C., Tomazzolli, R., Dalla Serra, M., Anderluh, G., Malovrh, P., Maček, P., Menestrina, G., y Tejuca, M. Cytotoxic Activity of a Tumor Protease-Activated Pore-Forming Toxin. Bioconjugate Chemistry, 2005; 16(2), 369–376. doi:10.1021/bc049873z

Mutter, N. L., Soskine, M., Huang, G., Albuquerque, I. S., Bernardes, G. J. L., &Maglia, G. Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution. ACS Chemical Biology, 2018.doi:10.1021/acschembio.8b00720

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2022 Arasai Vázquez

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.