Mecanismos de acción de la cardiotoxicidad inducida por terapias anti-neoplásicas

Daniel Carballo Torres, Jorge Luis Soriano García, Manuel Bazán Milián

Texto completo:

PDF

Resumen

Introducción: La cardiotoxicidad relacionada con las terapias del cáncer sigue siendo un desafío importante para cardiólogos y oncólogos.

Objetivo: Identificar los diferentes mecanismos de acción por el cual las terapias antineoplásicas inducen una cardiotoxicidad en los pacientes oncológicos.

Métodos: Se realizó una búsqueda en base de datos PubMed, de artículos en inglés y español, en los últimos diez años, con los descriptores: "cardiotoxicity", "treatment", "cancer" y "action mechanisms" combinadas mediante los operadores lógicos: “and” y “or”.

Desarrollo: El sistema cardiovascular parece ser muy sensible a la acción de muchos fármacos anti-neoplásicos, que pueden causar eventos tromboembólicos, isquemia, hipertensión arterial, arritmia y disfunción ventricular izquierda, que conduce a la insuficiencia cardíaca. Las antraciclinas son los fármacos cardiotóxicos más estudiados. El incremento en el uso de nuevos fármacos biológicos, agregan otros mecanismos de cardiotoxicidad secundarios. Losinhibidores de señalización intracelular como los inhibidores de tirosin-quinasas afectan el sistema cardiovascular al bloquear las vías principales de función del miocardio, especialmente en condiciones de estrés cardíaco, como hipertensión o hipertrofia. La falta de monitorizajes de rutina de eventos cardíacos en ensayos de inmunoterapia probablemente ha contribuido al subregistro de cardiotoxicidades inducidas por los inhibidores de puntos de control.

Conclusiones: El mayor y mejor conocimiento de los diferentes mecanismos de cardiotoxicidad secundarios a tratamientos antineoplásicos ha permitido entender las alteraciones sobre el sistema cardiovascular e implementar pautas de administración menos nocivas.

Palabras clave: cardiotoxicidad; tratamiento para cáncer; mecanismo de acción.

Referencias

Guha A, Armanious M, Fradley MG. Update on cardio-oncology: Novel cancer therapeutics and associated cardiotoxicities. Trends Cardiovasc Med. 2019;29(1):29-39. doi: 10.1016/j.tcm.2018.06.001.

Lenneman CG, Sawyer DB. Cardio-Oncology: An update on cardiotoxicity of cancer-related treatment. Circ Res. 2016;118(6):1008-20. doi: 10.1161/CIRCRESAHA.115.303633.

Perez IE, Taveras Alam S, Hernandez GA, Sancassani R. Cancer therapy-related cardiac dysfunction: an overview for the clinician. Clin Med Insights Cardiol. 2019;13:1179546819866445. doi: 10.1177/1179546819866445.

Dolci A, Dominici R, Cardinale D, Sandri MT, Panteghini M. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. Am J Clin Pathol. 2008;130(5):688-95. doi: 10.1309/AJCPB66LRIIVMQDR.

Clark RA, Berry NM, Chowdhury MH, McCarthy AL, Ullah S, Versace VL, et al. Heart failure following cancer treatment: characteristics, survival and mortality of a linked health data analysis. Intern Med J. 2016;46(11):1297-1306. doi: 10.1111/imj.13201.

Todaro MC, Oreto L, Qamar R, Paterick TE, Carerj S, Khandheria BK. Cardioncology: state of the heart. Int J Cardiol. 2013;168(2):680-7. doi: 10.1016/j.ijcard.2013.03.133.

Zamorano JL, Lancellotti P, Rodriguez Muñoz D. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC. 2016; 37:2768–801. https://doi.org/10.1093/eurheartj/ehw211

Kenigsberg B, Wellstein A, Barac A. Left ventricular dysfunction in cancer treatment: is it relevant? JACC Heart Fail. 2018;6(2):87-95. doi: 10.1016/j.jchf.2017.08.024.

Babiker HM, McBride A, Newton M, Boehmer LM, Drucker AG, Gowan M, et al. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol. 2018;126:186-200. doi: 10.1016/j.critrevonc.2018.03.014.

Ameri P, Canepa M, Anker MS, Belenkov Y, Bergler-Klein J, Cohen-Solal A, et al. Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail. 2018;20(5):879-87. doi: 10.1002/ejhf.1165.

Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, et al. Antineoplastic drug-induced cardiotoxicity: a redox perspective. Front Physiol. 2018;9:167. doi:10.3389/fphys.2018.00167.

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486-541. doi: 10.1038/s41418-017-0012-4.

Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24(7):1184-95. doi: 10.1038/cdd.2017.65.

Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130-42. doi: 10.1111/imr.12287.

Beyer AM, Bonini MG, Moslehi J. Cancer therapy-induced cardiovascular toxicity: old/new problems and old drugs. Am J Physiol Heart Circ Physiol. 2019;317(1):H164-H167. doi: 10.1152/ajpheart.00277.2019.

Farmakis D, Keramida K, Filippatos G. How to build a cardio-oncology service? Eur J Heart Fail. 2018;20(12):1732-34. doi:10.1002/ejhf.1336.

Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309-25. doi:10.3322/caac.21341.

Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol. 2018;2:13. doi:10.1038/s41698-018-0056-z.

Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018;19(9): e447-e458. doi: 10.1016/S1470-2045(18)30457-1.

Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, et al. From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: a translational overview. Antioxid Redox Signal. 2019;30(18):2110-53. doi:10.1089/ars.2016.6930.

Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124(2):617-30. doi:10.1172/JCI72931.

Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int J Cardiol Heart Vasc. 2016;10:17-24. doi: 10.1016/j.ijcha.2015.11.004.

Swift LP, Cutts SM, Nudelman A, Levovich I, Rephaeli A, Phillips DR. The cardio-protecting agent and topoisomerase II catalytic inhibitor sobuzoxane enhances doxorubicin-DNA adduct mediated cytotoxicity. Cancer Chemother Pharmacol. 2008;61(5):739-49. doi:10.1007/s00280-007-0528-2.

Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001;61(2):771-7. PMID: 11212281.

Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981-8. doi: 10.1161/CIRCULATIONAHA.114.013777.

Yeh ET, Chang HM. Oncocardiology-past, present, and future: a review. JAMA Cardiol. 2016;1(9):1066-72. doi:10.1001/jamacardio.2016.2132.

Fukuda A, Tahara K, Hane Y, Matsui T, Sasaoka S, Hatahira H, et al. Comparison of the adverse event profiles of conventional and liposomal formulations of doxorubicin using the FDA adverse event reporting system. PLoS One. 2017;12(9):e0185654. doi:10.1371/journal.pone.0185654.

Madeddu C, Deidda M, Piras A, Cadeddu C, Demurtas L, Puzzoni M, et al. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown). 2016;17 Suppl 1:S12-8. doi: 10.2459/JCM.0000000000000376.

Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019;218:112-31. doi:10.1016/j.lfs.2018.12.018.

Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, et al. Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. J Evid Based Integr Med. 2018;23:2156587218757649. doi: 10.1177/2156587218757649.

Kurauchi K, Nishikawa T, Miyahara E, Okamoto Y, Kawano Y. Role of metabolites of cyclophosphamide in cardiotoxicity. BMC Res Notes. 2017;10(1):406. doi:10.1186/s13104-017-2726-2.

Koutsoukis A, Ntalianis A, Repasos E, Kastritis E, Dimopoulos MA, Paraskevaidis I. Cardio-oncology: a focus on cardiotoxicity. Eur Cardiol. 2018;13(1):64-69. doi: 10.15420/ecr.2017:17:2.

Madeddu C, Deidda M, Piras A, Cadeddu C, Demurtas L, Puzzoni M, et al. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown). 2016;17 Suppl 1:S12-8. doi: 10.2459/JCM.0000000000000376.

Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors. 2016;42(6):647-64. doi:10.1002/biof.1301.

Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19(1):9-42. doi:10.1002/ejhf.654.

Jain D, Russell RR, Schwartz RG, Panjrath GS, Aronow W. Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep. 2017;19(5):36. doi: 10.1007/s11886-017-0846-x.

Shiga T, Hiraide M. Cardiotoxicities of 5-Fluorouracil and other fluoropyrimidines. Curr Treat Options Oncol. 2020;21(4):27. doi: 10.1007/s11864-020-0719-1.

Eskandari MR, Moghaddam F, Shahraki J, Pourahmad J. A comparison of cardiomyocyte cytotoxic mechanisms for 5-fluorouracil and its pro-drug capecitabine. Xenobiotica. 2015;45(1):79-87. doi:10.3109/00498254.2014.942809.

Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457-67. doi:10.1056/NEJMra1100265.

Clasen SC, Wald JW. Left Ventricular Dysfunction and Chemotherapeutic Agents. Curr Cardiol Rep. 2018;20(4):20. doi:10.1007/s11886-018-0967-x.

D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015; 17:627-8. doi:10.1038/ncb3149.

Advani PP, Ballman KV, Dockter TJ, Colon-Otero G, Pérez EA. Long-term cardiac safety analysis of NCCTG N9831 (Alliance) adjuvant trastuzumab trial. J Clin Oncol. 2016;34:581-7. doi:10.1200/JCO.2015.61.8413.

Leemasawat K, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Mechanisms and potential interventions associated with the cardiotoxicity of ErbB2-targeted drugs: insights from in vitro, in vivo, and clinical studies in breast cancer patients. Cell Mol Life Sci. 2020; 77(8):1571-89. doi:10.1007/s00018-019-03340-w

Nemeth BT, Varga ZV, Wu WJ, Pacher P. Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br J Pharmacol. 2017;174(21):3727-48. doi: 10.1111/bph.13643.

Pondé NF, Lambertini M, de Azambuja E. Twenty years of anti-HER2 therapy-associated cardiotoxicity. ESMO Open. 2016;1(4):e000073. doi:10.1136/ esmoopen-2016-000073.

Ananthan K, Lyon AR. The role of biomarkers in cardio-oncology. J Cardiovasc Transl Res. 2020;13(3):431-450. doi: 10.1007/s12265-020-10042-3.

Totzeck M, Schuler M, Stuschke M, Heusch G, Rassaf T. Cardio-oncology- strategies for management of cancer-therapy related cardiovascular disease. Int J Cardiol. 2019;280:163-75. doi:10.1016/j.ijcard.2019.01.038.

Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol. 2018;2:13. doi:10.1038/s41698-018-0056-z.

Jin Y, Xu Z, Yan H, He Q, Yang X, Luo P. A comprehensive review of clinical cardiotoxicity incidence of FDA-approved small-molecule kinase inhibitors. Front Pharmacol. 2020;11:891. doi:10.3389/fphar.2020.00891.

Boran T, Akyildiz AG, Jannuzzi AT, Alpertunga B. Extended regorafenib treatment can be linked with mitochondrial damage leading to cardiotoxicity. Toxicol Lett. 2021;336:39-49. doi:10.1016/j.toxlet.2020.11.003.

Bouitbir J, Alshaikhali A, Panajatovic MV, Abegg VF, Paech F, Krähenbühl S. Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib. Toxicology. 2019;426:152281. doi:10.1016/j.tox.2019.152281.

Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579-89. doi:10.1016/S1470-2045(18)30608-9.

Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136(21):2085-7. doi: 10.1161/CIRCULATIONAHA.117.030571.

Pradhan R, Nautiyal A, Singh S. Diagnosis of immune checkpoint inhibitor-associated myocarditis: A systematic review. Int J Cardiol. 2019;296:113-21. doi: 10.1016/j.ijcard.2019.07.025.

Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755-64. doi:10.1016/j.jacc.2018.02.037.

Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749-55. doi:10.1056/NEJMoa1609214.

Raikhelkar J, Uriel N. Immune checkpoint inhibitor myocarditis. Curr Opin Cardiol. 2019;34(3):303-6. doi:10.1097/HCO.0000000000000622.

Gavazzoni M, Vizzardi E, Gorga E, Bonadei I, Rossi L, Belotti A, et al. Mechanism of cardiovascular toxicity by proteasome inhibitors: New paradigm derived from clinical and pre-clinical evidence. Eur J Pharmacol. 2018;828:80-8. doi:10.1016/j.ejphar.2018.03.022.

Wu P, Oren O, Gertz MA, Yang EH. Proteasome inhibitor-related cardiotoxicity: mechanisms, diagnosis, and management. Curr Oncol Rep. 2020;22(7):66. doi: 10.1007/s11912-020-00931-w.

Penack O, Koenecke C. Complications after CD19+ CAR T-Cell therapy. Cancers (Basel). 2020;12(11):3445. doi:10.3390/cancers12113445.

Alvi RM, Frigault MJ, Fradley MG, Jain MD, Mahmood SS, Awadalla M, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-Cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099-3108. doi: 10.1016/j.jacc.2019.10.038.

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Daniel Carballo-Torres, Jorge Luis Soriano García, Manuel Bazán-Milián

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.